27 research outputs found

    High Speed (100G) Access Networks

    Get PDF
    Passive optical networks are currently the most promising solution for access networks. Increasing bandwidth requirements and big data applications need to a huge bandwidth. Nowadays, gigabit passive optical networks do not seem to be suitable for these purposes. This paper is focused ondescribing the development, parameters, and needs for HighSpeed Access Networks (such as 100G EPON). The simulationswith current wavelengths plans are presented. For simulations,we used VPITransmissionMakerTM 9.7. Our goal was to createa rudimentary bidirectional PON system with one ONU anddo several simulation scenarios by artificially increasing loss ina splitter for simulating more ONUs. Our following results consist of BER values and eye diagrams for each simulation scenario and proof that 100G EPON networks are most promising networks for the future

    Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-<it>trans </it>retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells.</p> <p>Methods</p> <p>Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes.</p> <p>Results</p> <p>Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines.</p> <p>Conclusions</p> <p>Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.</p

    High Speed (100G) Access Networks

    Get PDF
    Passive optical networks are currently the most promising solution for access networks. Increasing bandwidth requirements and big data applications need to a huge bandwidth. Nowadays, gigabit passive optical networks do not seem to be suitable for these purposes. This paper is focused ondescribing the development, parameters, and needs for HighSpeed Access Networks (such as 100G EPON). The simulationswith current wavelengths plans are presented. For simulations,we used VPITransmissionMakerTM 9.7. Our goal was to createa rudimentary bidirectional PON system with one ONU anddo several simulation scenarios by artificially increasing loss ina splitter for simulating more ONUs. Our following results consist of BER values and eye diagrams for each simulation scenario and proof that 100G EPON networks are most promising networks for the future

    Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nestin was originally identified as a class VI intermediate filament protein that is expressed in stem cells and progenitor cells in the mammalian CNS during development. This protein is replaced in the adult organism by other intermediate filament proteins; however, nestin may be re-expressed under certain pathological conditions such as ischemia, inflammation, brain injury, and neoplastic transformation. Nestin has been detected in many kinds of tumors, especially in tumors derived from the CNS. Co-expression of nestin and the CD133 surface molecule is considered to be a marker for cancer stem cells in neurogenic tumors. Our work was aimed at a detailed study of nestin expression in osteosarcomas and osteosarcoma-derived cell lines.</p> <p>Methods</p> <p>Using immunodetection methods, we examined nestin in tumor tissue samples from 18 patients with osteosarcomas. We also successfully established permanent cell lines from the tumor tissue of 4 patients and immunodetection of nestin and CD133 was performed on these cell lines.</p> <p>Results</p> <p>Nestin-positive tumor cells were immunohistochemically detected in all of the examined osteosarcomas, but the proportion of these cells that were positively stained as well as the intensity of staining varied. Nestin-positive cells were rarely observed in 2 tumor samples, and the remaining 16 tumor samples showed various nestin expression patterns ranging from very sporadic occurrence to an overwhelming proportion of cells with strong positive staining. Three of the established osteosarcoma cell lines were demonstrated to be nestin-positive, and only one cell line showed no expression of nestin; this finding corresponds with the rare occurrence of nestin-positive cells in the respective tumor sample. Moreover, three of these osteosarcoma cell lines were undoubtedly proven to be Nes+/CD133+.</p> <p>Conclusion</p> <p>Our results represent the first evidence of nestin expression in osteosarcomas and suggest the possible occurrence of cells with a stem-like phenotype in these tumors.</p

    A selective p53 activator and anticancer agent to improve colorectal cancer therapy

    Get PDF
    Impairment of the p53 pathway is a critical event in cancer. Therefore, reestablishing p53 activity has become one of the most appealing anticancer therapeutic strategies. Here, we disclose the p53-activating anticancer drug (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole (MANIO). MANIO demonstrates a notable selectivity to the p53 pathway, activating wild-type (WT)p53 and restoring WT-like function to mutant (mut)p53 in human cancer cells. MANIO directly binds to the WT/mutp53 DNA-binding domain, enhancing the protein thermal stability, DNA-binding ability, and transcriptional activity. The high efficacy of MANIO as an anticancer agent toward cancers harboring WT/mutp53 is further demonstrated in patient-derived cells and xenograft mouse models of colorectal cancer (CRC), with no signs of undesirable side effects. MANIO synergizes with conventional chemotherapeutic drugs, and in vitro and in vivo studies predict its adequate drug-likeness and pharmacokinetic properties for a clinical candidate. As a single agent or in combination, MANIO will advance anticancer-targeted therapy, particularly benefiting CRC patients harboring distinct p53 status.We thank PT national funds (FCT/MCTES, Fundação para a Ciência e a Tecnologia, and Ministério da Ciência, Tecnologia e Ensino Superior) through grants UIDB/50006/2020, UID/BIO/04469/2019, UIDB/04539/2020, and UIDP/04539/2020 (CIBB); BioTecNorte operation (NORTE-01-0145-FEDER000004) and Porto Neurosciences and Neurologic Disease Research Initiative at I3S (Norte-01-0145-FEDER-000008) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte; Masaryk University (Project MUNI/A/1127/2019) and Ministry of Education, Youth and Sports of the Czech Republic (project nos. LQ1605 and LM2018125); FCT financial support through the fellowships SFRH/BD/119144/2016 (H.R.) and SFRH/BD/117949/2016 (L.R.); Fondazione AIRC (IG#18985, A.I.); and the Programa Operacional Potencial Humano (POCH), specifically the BiotechHealth Programme (Doctoral Programme on Cellular and Molecular Biotechnology Applied to Health Sciences, PD/00016/2012). We thank Dario Rizzotto for assistance in preparing the libraries for RNA sequencing. Funding: This work was supported by PT National Funds (FCT/MCTES, Fundação para a Ciência e Tecnologia, and Ministério da Ciência, Tecnologia e Ensino Superior) via the projects UIDB/50006/2020 (LAQV/REQUIMTE), UIDB/00313/2020, and UIDP/00313/2020, co-funded by COMPETE2020-UE.info:eu-repo/semantics/publishedVersio

    Why Differentiation Therapy Sometimes Fails: Molecular Mechanisms of Resistance to Retinoids

    No full text
    Retinoids represent a popular group of differentiation inducers that are successfully used in oncology for treatment of acute promyelocytic leukemia in adults and of neuroblastoma in children. The therapeutic potential of retinoids is based on their key role in the regulation of cell differentiation, growth, and apoptosis, which provides a basis for their use both in cancer therapy and chemoprevention. Nevertheless, patients treated with retinoids often exhibit or develop resistance to this therapy. Although resistance to retinoids is commonly categorized as either acquired or intrinsic, resistance as a single phenotypic feature is usually based on the same mechanisms that are closely related or combined in both of these types. In this review, we summarize the most common changes in retinoid metabolism and action that may affect the sensitivity of a tumor cell to treatment with retinoids. The availability of retinoids can be regulated by alterations in retinol metabolism or in retinoid intracellular transport, by degradation of retinoids or by their efflux from the cell. Retinoid effects on gene expression can be regulated via retinoid receptors or via other molecules in the transcriptional complex. Finally, the role of small-molecular-weight inhibitors of altered cell signaling pathways in overcoming the resistance to retinoids is also suggested

    Traffic lights for retinoids in oncology: molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy

    No full text
    Abstract For decades, retinoids and their synthetic derivatives have been well established anticancer treatments due to their ability to regulate cell growth and induce cell differentiation and apoptosis. Many studies have reported the promising role of retinoids in attaining better outcomes for adult or pediatric patients suffering from several types of cancer, especially acute myeloid leukemia and neuroblastoma. However, even this promising differentiation therapy has some limitations: retinoid toxicity and intrinsic or acquired resistance have been observed in many patients. Therefore, the identification of molecular markers that predict the therapeutic response to retinoid treatment is undoubtedly important for retinoid use in clinical practice. The purpose of this review is to summarize the current knowledge on candidate markers, including both genetic alterations and protein markers, for retinoid resistance and sensitivity in human malignancies

    Repurposing Tyrosine Kinase Inhibitors to Overcome Multidrug Resistance in Cancer: A Focus on Transporters and Lysosomal Sequestration

    No full text
    Tyrosine kinase inhibitors (TKIs) are being increasingly used to treat various malignancies. Although they were designed to target aberrant tyrosine kinases, they are also intimately linked with the mechanisms of multidrug resistance (MDR) in cancer cells. MDR-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters are responsible for TKI uptake and efflux, respectively. However, the role of TKIs appears to be dual because they can act as substrates and/or inhibitors of these transporters. In addition, several TKIs have been identified to be sequestered into lysosomes either due to their physiochemical properties or via ABC transporters expressed on the lysosomal membrane. Since the development of MDR represents a great concern in anticancer treatment, it is important to elucidate the interactions of TKIs with MDR-related transporters as well as to improve the properties that would prevent TKIs from diffusing into lysosomes. These findings not only help to avoid MDR, but also help to define the possible impact of combining TKIs with other anticancer drugs, leading to more efficient therapy and fewer adverse effects in patients

    Thiosemicarbazones Can Act Synergistically with Anthracyclines to Downregulate CHEK1 Expression and Induce DNA Damage in Cell Lines Derived from Pediatric Solid Tumors

    No full text
    Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments revealed that this synergism was independent of Pgp expression but rather resulted from impaired DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be the most efficient approach, achieving the strongest synergistic effect with lower concentrations of these drugs. Overall, our study identified a new mechanism that offers an avenue for combining thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status
    corecore